Applicants’ programming exercises 2018

Department of Computer Science, UiT The Arctic University of Norway
Programming exercises for applicants to the Computer Science Master studies in Tromsg

These exercises must be solved using the Python or C' programming languages.

The submitted code should be well documented through comments in the code or by other means. The code
should be self contained: the code should not depend on code or tools not included in a standard distribution
of the programming language you have chosen. The documentation should also include information about how
to compile (for C code) and execute the submitted code. We should be able to test the submitted code on a
standard installation of C or Python.

These exercises are used to screen applicants for their programming knowledge and background. These exercises
are not meant to illustrate for the applicants the level of programming knowledge and experience we expect
from them for our Master studies in Computer Science in Tromsg. As a master student in Computer Science
in Tromsg you are expected to solve programming tasks that are more complicated than shown here.

Assignment: Integer to roman numeral, and back again

Roman numerals use the symbols I (1), V (5), X (10), L (50), C (100), D (500) and M (1000). The symbols are
combined and added to create numeric values. As an example, the number 32 can be written XXXII. Subtraction
notation is used to to avoid confusion between, for instance, IIII and III. This takes the form of a smaller
value in front of a larger, such as IX, which represents 9, or IV, which represents 4.

See the appendix Roman numerals for a more complete description that covers the variations necessary for this
assignment

(a) Implement a C or Python function int_to_roman() that converts an integer to a roman numeral. The
input is guaranteed to be within the range of 1 to 3999 (inclusive).

char *int_to_roman(int val) {

def int_to_roman(val):
- /* C function implementation here */

Python function implementation here

}

The solution should support the subtractive notation with the values IV (4), IX (9), XL (40), XC (90), CD
(400), and CM (900). For example, if the input to the function is 1994, the output should be "MCMXCIV"
(since M=1000, CM=900, XC=90 and IV=4).

(b) Implement a C or Python function roman_to_int() that takes the Roman numerals produced by the
function int_to_roman() in assignment (a) and convert them back to integers. The input is guaranteed
to be within the same range as in (a).

int roman_to_int(char *numeral) {

def roman_to_int (numeral): . . .
/* C function implementation here */

Python function implementation here

}

(c) Optional: Create a program that uses the functions from (a) and (b) to write out all the numbers from
1 to 3999 as Roman numerals, and then convert them back to, and print them out, as integers.

Appendix

Roman numerals

The following description is extracted from the Wikipedia article on Roman Numerals! This copy only includes
the relevant parts for this assignment. Please refer to the Wikipedia entry if you are interested in more details.

The numeric system represented by Roman numerals originated in ancient Rome and remained the usual way of
writing numbers throughout Europe well into the Late Middle Ages. Numbers in this system are represented by
combinations of letters from the Latin alphabet. Roman numerals, as used today, are based on seven symbols:

Symbol: I V X L C D M
Value: 1 5 10 50 100 500 1000

The original pattern for Roman numerals used the symbols I, V, and X (1, 5, and 10) as simple tally marks.
Each marker for 1 (I) added a unit value up to 5 (V), and was then added to V to make the numbers from 6 to
9:

I, II, III, IIII,V, VI, VII, VIII, VIIII, X

The numerals for 4 (IIIT) and 9 (VIIII) proved problematic (among other things, they are easily confused with
III and VIII), and are generally replaced with IV (one less than 5) and IX (one less than 10). This feature of
Roman numerals is called subtractive notation. The numbers from 1 to 10 (including subtractive notation for
4 and 9) are expressed in Roman numerals as follows:

I, II, III, IV, V, VI, VII, VIII, IX, X

The system being basically decimal, tens and hundreds follow the same pattern. Thus 10 to 100 (counting in
tens, with X taking the place of I, L taking the place of V and C taking the place of X):

X, XX, XXX, XL, L, LX, LXX, LXXX, XC, C

Note that 40 (XL) and 90 (XC) follow the same subtractive pattern as 4 and 9.
Similarly, 100 to 1000 (counting in hundreds):

C, CC, CCC, CD, D, DC, DCC, DCCC, CM, M

Again, 400 (CD) and 900 (CM) follow the standard subtractive pattern.

Many numbers include hundreds, units and tens. The Roman numeral system being basically decimal, each
place is added in descending sequence from left to right, as with Arabic numerals. For example:

o 39 = “Thirty nine” (XXX+IX) = XXXIX
o 246 = “Two hundred and forty siz” (CC+XL+VI) = CCXLVI

As each place has its own notation there is no need for place keeping zeros, so missing places are ignored, as in
Latin (and English) speech, thus:

e 207 = “Two hundred and seven” (CC4+VII) = CCVII
o 1066 = “A thousand and sizty siz” (M+LX+VI) = MLXVI

Roman numerals for large numbers are nowadays seen mainly in the form of year numbers (other uses are
detailed later in this article), as in these examples:

e 1776 (M4+DCC+LXX+VI) = MDCCLXXVI (the date written on the book held by the Statue of Liberty)

o 1954 (M4+CM+L+1IV) = MCMLIV (as in the trailer for the movie The Last Time I Saw Paris)

o 1990 (M+CM+XC) = MCMXC (used as the title of musical project Enigma’s debut album MCMXC a.D.)
e 2014 (MM+4X+41IV) = MMXIV (the year of the games of the XXII Olympic Winter Games in Sochi)

The Wikipedia entry contains more information about the number system, but we will focus on the above
description.

Thttps://en.wikipedia.org/wiki/Roman_numerals

