Bilde av Jenssen, Robert
Bilde av Jenssen, Robert
Professor / Machine Learning / Director Visual Intelligence Department of Physics and Technology robert.jenssen@uit.no +4777646493 41699612 Tromsø You can find me here

Robert Jenssen


Job description

I am the Director of Visual Intelligence. This is a Centre for Research-based Innovation (SFI) funded for 8 years by the Research Council of Norway and a consortium of private and public partners (grant no. 309439). We are at the international forefront in deep learning research for image analysis in particular and for multimodal learning in general.

My main position is as Professor in the UiT Machine Learning Group.

I am also an Adjunct Professor at Pioneer Centre for AI, University of Copenhagen & Norwegian Computing Center.

For a brief CV, please see "Attachments".

Contribute to our joint Future through Research

My motivation is to contribute solutions toward the pressing societal challenges of our time in health, within marine monitoring, for better exploitation of energy resources, and for precise observation of the Earth. I have extensive collaboration with industry and public sector stakeholders. My methodological research has focused on topics such as neural networks, information theoretic learning, kernel methods, unsupervised learning, self-supervised learning, and explainable AI (XAI). My research is regularly published in the most central conferences and journals in the field (ICLR, ICML, NeurIPS, etc). I have been fortunate to work with many good colleagues and together our research has been recognized by our peers in the field: 

Research (and teaching) Honors

  • Best Paper Award, Pattern Recognition Letters (2024)
  • Dissertation Award, Norwegian Artificial Intelligence Society (Trosten, co-supervisor, 2023)
  • Best Paper Award, Colour and Visual Computing Symposium (2022)
  • Best Paper Award Int’l Medical Informatics Association (2018)
  • Outstanding Lecturer Award, Faculty of Science and Technology, UiT (2018)
  • Best Student Paper Award, Scandinavian Conference on Image Analysis (supervisor) (2017)
  • Winner of the IEEE GRS Society Letters Prize Paper Award (2013)
  • Featured Paper, IEEE Transactions on Pattern Analysis and Machine Intelligence (2010)
  • Received the University of Tromsø Young Investigator Award (a bi-annual award) (2007)
  • Received the ICASSP Outstanding Student Paper Award (2005)
  • Pattern Recognition Journal Best Paper Award, Honourable Mention (2003)

International Leadership (current)

  • Scientific Advisory Board  (SAB) for the Max Planck Institute for Intelligent Systems https://is.mpg.de
  • Scientific Advisory Board for one of the new French "AI Excellence Clusters" SequoIA, funded by France 2030 and administered by the French National Agency for Research (ANR)
  • SAB for DIREC - Digital Research Centre Denmark https://direc.dk

Selected recent publications:

Google Scholar

Aggregation of Dependent Expert Distributions in Multimodal Variational Autoencoders. ICML 2025. https://openreview.net/forum?id=jYmGi1175R

The Conditional Cauchy-Schwarz Divergence with Applications to Time-Series Data and Sequential Decision Making. IEEE TPAMI 2025.

REPEAT: Improving Uncertainty Estimation in Representation Learning Explainability. AAAI 2025. https://arxiv.org/abs/2412.08513

Guest Editor: Special Issue on Information Theoretic Methods for the Generalization, Robustness, and Interpretability of Machine Learning. IEEE TNNLS 2025. https://doi.org/10.1109/TNNLS.2025.3525991

Finding NEM-U: Explaining unsupervised representation learning through neural network generated explanation masks. ICML 2024. https://proceedings.mlr.press/v235/moller24a.html

MAP IT to visualize representations. ICLR 2024. https://openreview.net/pdf?id=OKf6JtXtoy

Cauchy-Schwarz divergence information bottleneck for regression. ICLR, 2024. https://openreview.net/pdf?id=7wY67ZDQTE

ADNet++: A few-shot learning framework for multi-class medical image volume segmentation with uncertainty-guided feature refinement. Medical Image Analysis, 2023. https://doi.org/10.1016/j.media.2023.102870

Hubs and Hyperspheres: Reducing Hubness and Improving Transductive Few-Shot Learning With Hyperspherical Embeddings. CVPR, 2023. https://openaccess.thecvf.com/content/CVPR2023/html/Trosten_Hubs_and_Hyperspheres_Reducing_Hubness_and_Improving_Transductive_Few-Shot_Learning_CVPR_2023_paper.html

On the Effects of Self-Supervision and Contrastive Alignment in Deep Multi-View Clustering. CVPR, 2023. https://openaccess.thecvf.com/content/CVPR2023/html/Trosten_On_the_Effects_of_Self-Supervision_and_Contrastive_Alignment_in_Deep_CVPR_2023_paper.html

RELAX: Representation Learning Explainability. International Journal of Computer Vision, 2023. https://doi.org/10.1007/s11263-023-01773-2

ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model. NeurIPS, 2022. https://openreview.net/forum?id=L8pZq2eRWvX

Principle of Relevant Information for Graph Sparsification. UAI, 2022. https://proceedings.mlr.press/v180/yu22c.html

Anomaly Detection-inspired Few-shot Medical Image Segmentation through Self-supervision with Supervoxels. Medical Image Analysis, 2022. https://doi.org/10.1016/j.media.2022.102385

Clinically Relevant Features for Predicting the Severity of Surgical Site Infections. IEEE Journal of Biomedical and Health Informatics, 2021. https://doi.org/10.1109/JBHI.2021.3121038

Joint Optimization of an Autoencoder for Clustering and Embedding. Machine Learning, 2021. https://doi.org/10.1007/s10994-021-06015-5

Measuring Dependence with Matrix-based Entropy Functional. AAAI, 2021. https://doi.org/10.1609/aaai.v35i12.17288

Reconsidering Representation Alignment for Multi-view Clustering. CVPR, 2021. https://openaccess.thecvf.com/content/CVPR2021/papers/Trosten_Reconsidering_Representation_Alignment_for_Multi-View_Clustering_CVPR_2021_paper.pdf

Uncertainty-aware Deep Ensembles for Reliable and Explainable Predictions of Clinical Time Series. IEEE Journal of Biomedical and Health Informatics, 2020. https://doi.org/10.1109/JBHI.2020.3042637

SEN: A Novel Feature Normalization Dissimilarity Measure for Prototypical Few-Shot Learning Networks. ECCV, 2020. https://link.springer.com/chapter/10.1007/978-3-030-58592-1_8

 

 



  • Thea Brüsch, Kristoffer Wickstrøm, Mikkel N. Schmidt, Robert Jenssen, Tommy Sonne Alstrøm :
    FLEXtime: Filterbank Learning to Explain Time Series
    Communications in Computer and Information Science (CCIS) 14. October 2025 DOI
  • Teresa Dorszewski, Lenka Tětková, Robert Jenssen, Lars Kai Hansen, Kristoffer Knutsen Wickstrøm :
    From Colors to Classes: Emergence of Concepts in Vision Transformers
    12. October 2025 DOI
  • Rogelio Andrade Mancisidor, Robert Jenssen, Shujian Yu, Michael Kampffmeyer :
    Aggregation of Dependent Expert Distributions in Multimodal Variational Autoencoders
    Proceedings of Machine Learning Research (PMLR) 2025
  • Solveig Thrun, Stine Hansen, Zijun Sun, Nele Blum, Suaiba Amina Salahuddin, Kristoffer Wickstrøm et al.:
    Reconsidering Explicit Longitudinal Mammography Alignment for Enhanced Breast Cancer Risk Prediction
    Lecture Notes in Computer Science (LNCS) 20. September 2025 DOI
  • Kristoffer Wickstrøm, Thea Brüsch, Michael Kampffmeyer, Robert Jenssen :
    REPEAT: Improving Uncertainty Estimation in Representation Learning Explainability | Proceedings of the AAAI Conference on Artificial Intelligence
    Proceedings of the AAAI Conference on Artificial Intelligence 11. April 2025 DOI
  • Lars Uebbing, Harald Lykke Joakimsen, Luigi Tommaso Luppino, Iver Martinsen, Andrew McDonald, Kristoffer Wickstrøm et al.:
    Investigating the Impact of Feature Reduction for Deep Learning-based Seasonal Sea Ice Forecasting
    Proceedings of Machine Learning Research (PMLR) 2025 DOI
  • Changkyu Choi, Arangan Subramaniam, Nils Olav Handegard, Ali Ramezani-Kebrya, Robert Jenssen :
    Leveraging Foundation Model Adapters to Enable Robust and Semantic Underwater Exploration
    2025 ARKIV
  • Shujian Yu, Hongming Li, Sigurd Eivindson Løkse, Robert Jenssen, Jose C. Principe :
    The Conditional Cauchy-Schwarz Divergence With Applications to Time-Series Data and Sequential Decision Making
    IEEE Transactions on Pattern Analysis and Machine Intelligence 2025 DOI
  • Suaiba Amina Salahuddin, Elisabeth Wetzer, Kristoffer Wickstrøm, Solveig Thrun, Michael Kampffmeyer, Robert Jenssen :
    Assessing the Efficacy of Multi-task Learning in Mammographic Density Classification: A Study on Class Imbalance and Model Performance
    Lecture Notes in Computer Science (LNCS) 16. June 2025 DOI
  • Harald Lykke Joakimsen, Iver Martinsen, Luigi Tommaso Luppino, Andrew McDonald, Scott Hosking, Robert Jenssen :
    Interrogating Sea Ice Predictability with Gradients
    IEEE Geoscience and Remote Sensing Letters 2024 DOI / ARKIV
  • Duy Khoi Tran, van Nhan Nguyen, Davide Roverso, Robert Jenssen, Michael Christian Kampffmeyer :
    LSNetv2: Improving weakly supervised power line detection with bipartite matching
    Expert Systems With Applications 2024 DOI / ARKIV
  • Kaizhong Zheng, Shujian Yu, Baojuan Li, Robert Jenssen, Badong Chen :
    BrainIB: Interpretable Brain Network-Based Psychiatric Diagnosis With Graph Information Bottleneck
    IEEE Transactions on Neural Networks and Learning Systems 2024 DOI / ARKIV
  • Bjørn Møller, Christian Igel, Kristoffer Knutsen Wickstrøm, Jon Sporring, Robert Jenssen, Bulat Ibragimov :
    Finding NEM-U: Explaining unsupervised representation learning through neural network generated explanation masks
    Proceedings of Machine Learning Research (PMLR) 2024 ARKIV / SAMMENDRAG / OMTALE
  • Shujian Yu, Sigurd Eivindson Løkse, Robert Jenssen, Jose Principe :
    Cauchy-Schwarz Divergence Information Bottleneck for Regression
    International Conference on Learning Representations 2024 FULLTEKST
  • Robert Jenssen, Kerstin Bach :
    Proceedings of the Symposium of the Norwegian AI Society 2025
    CEUR-WS 2025 FULLTEKST
  • Solveig Thrun, Stine Hansen, Zijun Sun, Nele Blum, Suaiba Amina Salahuddin, Xin Wang et al.:
    Reconsidering Spatial Alignment for Longitudinal Breast Cancer Risk Prediction
    07. December 2025
  • Johan Mylius-Kroken, Kristoffer Wickstrøm, Elisabeth Wetzer, Ali Ramezani-Kebrya, Robert Jenssen :
    Can a Convex Partition caused by a CPWL Neural Network be used for Density Estimation?
    National conference on image processing and machine learnin 2025
  • Lars Uebbing, Harald Lykke Joakimsen, Kristoffer Wickstrøm, Michael Kampffmeyer, Sebastien Francois Lefevre, Arnt Børre Salberg et al.:
    NOFE - Neural Operator Function Embedding
    2025
  • Lars Uebbing, Harald Lykke Joakimsen, Kristoffer Wickstrøm, Michael Kampffmeyer, Sebastien Francois Lefevre, Arnt Børre Salberg et al.:
    NOFE Neural Operator Function Embedding
    2025 DOI
  • Solveig Thrun, Stine Hansen, Nele Blum, Maik Stille, Robert Jenssen, Michael Kampffmeyer :
    TemporalMammoNet: Deep learning-based breast cancer classification using temporal mammograms
    08. January 2025
  • Solveig Thrun, Stine Hansen, Zijun Sun, Nele Blum, Suaiba Amina Salahuddin, Kristoffer Wickstrøm et al.:
    Reconsidering Explicit Longitudinal Mammography Alignment for Enhanced Breast Cancer Risk Prediction
    20. September 2025
  • Robert Jenssen :
    Norges eldste fagmiljø innen KI
    09. March 2025 DOI
  • Robert Jenssen, Kerstin Bach, Petter Bjørklund :
    UiT er vertskap for landsdekkende KI-konferanse
    uit.no 02. April 2025 DOI
  • Robert Jenssen, Kristian Stave, Ulvhild Søyland Due, Linn Merethe Ophaug :
    Studenter etterlyser bedre informasjon om KI-regler på eksamen
    03. March 2025 DOI
  • Robert Jenssen, Cathrine Tegnander, Dag Rune Olsen, Ragnhild Sjoner Syrstad, André Teigland, Sven Størmer Thaulow et al.:
    Forskningsdrevet innovasjon innen KI: Hvordan styrker vi det sammen?
    12. August 2025 DOI
  • Elisabeth Wetzer, Suaiba Amina Salahuddin, Robert Jenssen, Michael Christian Kampffmeyer, Torkil Stoltz :
    Verdens nordligste KI-konferanse
    08. January 2025
  • Arangan Subramaniam, Changkyu Choi, Nils Olav Handegard, Robert Jenssen, Ali Ramezani-Kebrya :
    Marine Intelligence: Innovations to Enhance Underwater Exploration
    2025
  • Suaiba Amina Salahuddin, Elisabeth Wetzer, Kristoffer Wickstrøm, Solveig Thrun, Michael Kampffmeyer, Robert Jenssen :
    Assessing the Efficacy of Multi-task Learning in Mammographic Density Classification: A Study on Class Imbalance and Model Performance
    2025
  • Petter Bjørklund, Elisabeth Wetzer, Robert Jenssen :
    UiT-forsker invitert til prestisje-konferanse for Nobelpris-vinnere
    uit.no 2024
  • Robert Jenssen, August Hansen :
    Intervju om KI innen helsesektoren på NRK Radio
    14. August 2024
  • Petter Bjørklund, Michael Christian Kampffmeyer, Arnt-Børre Salberg, Robert Jenssen :
    Full klaff for KI-konferansen i Tromsø
    uit.no 2024 FULLTEKST
  • Robert Jenssen, Keyur Radiya, Torkild Jemterud :
    Den store serien om KI (4:10) - Vaktskifte: Dr. KI stempler inn
    06. April 2024
  • Petter Bjørklund, Robert Jenssen, Klas Henning Pettersen :
    Til Tromsø for å diskutere kunstig intelligens
    uit.no 2024 FULLTEKST
  • Robert Jenssen, Kristoffer Knutsen Wickstrøm, Petter Bjørklund :
    Slik kan kunstig intelligens hjelpe legene
    Forskning.no 2024
  • Robert Jenssen :
    NRK-intervju om Northern Lights Deep Learning Conference 2024
    05. January 2024
  • Robert Jenssen, Luigi Tommaso Luppino, Rune Endresen Ytreberg, Mark Andrew Girolami, Iver Martinsen, Harald Lykke Joakimsen :
    Midt i skitværet spår de bedre og raskere værmelding
    10. January 2024
  • Robert Jenssen, Ole-Christoffer Granmo, Eldrid Borgan :
    Kan norsk oppfinnelse revolusjonere kunstig intelligens?
    31. January 2024
  • Robert Jenssen, Rolf Ole Lindsetmo, Karl Øyvind Mikalsen, Oddny Johnsen :
    Markerer Tromsøs fortrinn på kunstig intelligens
    19. April 2024
  • Robert Jenssen :
    KI og pasientsikkerhet
    2024
  • Robert Jenssen :
    Kunstig intelligens - Hva er det? Hvordan kan det (mis)brukes?
    2024
  • Robert Jenssen, Shujian Yu :
    Discrepancies to incorporate knowledge
    2024
  • Robert Jenssen :
    Towards eXplainable AI (XAI) with deep learning
    2024
  • Robert Jenssen, Michael Christian Kampffmeyer :
    Visual Intelligence Research and Innovation
    2024
  • Robert Jenssen :
    Kunstig intelligens i transfusjonsmedisin
    2024
  • Robert Jenssen :
    XAI for representation learning
    2024
  • Robert Jenssen, Michael Christian Kampffmeyer :
    Visual Intelligence Research and Innovations
    2024
  • Robert Jenssen :
    KI i havnæringene?
    2024
  • Robert Jenssen :
    Exploiting data acquisition knowledge for cardiac ultrasound and content-based CT image retrieval
    2024
  • Robert Jenssen :
    AI for acoustic fish target detection and beyond
    2024
  • Robert Jenssen :
    Medical Image Analysis for Cardiac Ultrasound and CT Image Retrieval
    2024

  • The 50 latest publications is shown on this page. See all publications in Cristin here →


    Teaching

    I have taught many courses related to machine learning. I frequently give presentations at various meetings and for the general public. Some examples (in Norwegian):

    Patient Safety Conference 2024

    "Saturday University"


    Member of research group



    Forskningsparken 1 B271


    Click for bigger map



    Attachments: