Bilde av Johansen, Dag
Bilde av Johansen, Dag
Professor Department of Computer Science dag.johansen@uit.no +4777644047 94525062 You can find me here

Dag Johansen



  • Cise Midoglu, Andreas Kjæreng Winther, Matthias Boeker, Susann Dahl Pettersen, Sigurd Pedersen, Nourhan Ragab et al.:
    A large-scale multivariate soccer athlete health, performance, and position monitoring dataset
    Scientific Data 2024 ARKIV / DOI
  • Andreas Kjæreng Winther, Ivan Andre Matias Do Vale Baptista, Sigurd Pedersen, João Brito, Morten B. Randers, Dag Johansen et al.:
    An analysis of training load in highly trained female football players
    PLOS ONE 2024 ARKIV / DOI
  • Sayed Mohammad Majidi Dorcheh, Mehdi Houshmand Sarkhoosh, Cise Midoglu, Saeed Shafiee Sabet, Tomas Kupka, Michael Alexander Riegler et al.:
    AI-Based Cropping of Sport Videos Using SmartCrop
    International Journal of Semantic Computing (IJSC) 2024 DOI
  • Mohsin Khan, Håvard Johansen Dagenborg, Dag Johansen :
    Performance Evaluation of Lightweight Stream Ciphers for Real-Time Video Feed Encryption on ARM Processor
    Future Internet 2024 ARKIV / DOI
  • Pegah Salehi, Syed Zohaib Hassan, Gunn Astrid Baugerud, Martine Powell, Cayetana López Cano, Miriam S. Johnson et al.:
    Immersive Virtual Reality in Child Skills Interview Training: A Comparison of 2D And 3D environment
    Association for Computing Machinery (ACM) 2024 DOI
  • Birk Sebastian Frostelid Torpmann-Hagen, Michael Riegler, Pål Halvorsen, Dag Johansen :
    A Robust Framework for Distributional Shift Detection Under Sample-Bias
    IEEE Access 2024 ARKIV / DOI
  • Ivan Andre Matias Do Vale Baptista, Andreas Kjæreng Winther, Dag Johansen, Svein Arne Pettersen :
    Analysis of peak locomotor demands in women’s football–the influence of different epoch lengths
    PLOS ONE 2024 ARKIV / DOI
  • Mehdi Houshmand Sarkhoosh, Sayed Mohammad Majidi Dorcheh, Cise Midoglu, Saeed Shafiee Sabet, Tomas Kupka, Dag Johansen et al.:
    AI-Based Cropping of Ice Hockey Videos for Different Social Media Representations
    IEEE Access 2024 DOI
  • Enrico Tedeschi, Håvard Johansen Dagenborg, Dag Johansen, Øyvind Arne-Moen Nohr :
    Mining Profitability in Bitcoin: Calculations of User-Miner Equilibria and Cost of Mining
    Lecture Notes in Computer Science (LNCS) 2024 DOI
  • Cise Midoglu, Andreas Kjæreng Winther, Matthias Boeker, Susann Dahl Pettersen, Nourhan Ragab, Tomas Kupka et al.:
    A large-scale multivariate soccer athlete health, performance, and position monitoring dataset
    Scientific Data 2024 DOI
  • Pegah Salehi, Syed Zohaib Hassan, Gunn Astrid Baugerud, Martine Powell, Miriam S. Johnson, Dag Johansen et al.:
    A Theoretical and Empirical Analysis of 2D and 3D Virtual Environments in Training for Child Interview Skills
    IEEE Access 2024 DOI
  • Bjørn Aslak Juliussen, Elisavet Kozyri, Dag Johansen, Jon Petter Rui :
    The third country problem under the GDPR: Enhancing protection of data transfers with technology
    International Data Privacy Law (IDPL) 2023 ARKIV / DOI
  • Tor-Arne Schmidt Nordmo, Aril Bernhard Ovesen, Håvard Dagenborg, Pål Halvorsen, Michael Alexander Riegler, Dag Johansen :
    Fishing Trawler Event Detection: An Important Step Towards Digitization of Sustainable Fishing
    IEEE conference proceedings 2023 ARKIV / DOI
  • Ivan Andre Matias Do Vale Baptista, Andreas Kjæreng Winther, Sigurd Pedersen, Dag Johansen, Svein Arne Pettersen :
    The influence of age on the match-to-match variability of physical performance in women’s elite football
    Frontiers in Physiology 2023 ARKIV / DOI
  • Michael Alexander Riegler, Vajira Thambawita, Thu Nguyen, Steven Alexander Hicks, Vibeke Telle-Hansen, Svein Arne Pettersen et al.:
    ScopeSense: An 8.5-Month Sport, Nutrition, and Lifestyle Lifelogging Dataset
    Lecture Notes in Computer Science (LNCS) 2023 ARKIV / DOI
  • Bjørn Aslak Juliussen, Jon Petter Rui, Dag Johansen :
    Algorithms that forget: Machine unlearning and the right to erasure
    Computer Law and Security Review 2023 ARKIV / DOI
  • Tor-Arne Schmidt Nordmo, Michael Riegler, Håvard Johansen Dagenborg, Dag Johansen :
    Arctic HARE: A Machine Learning-Based System for Performance Analysis of Cross-Country Skiers
    Springer 2023 ARKIV / DOI
  • Michael Alexander Riegler, Vajira Thambawita, Ayan Chatterjee, Thu Nguyen, Steven Hicks, Vibeke Telle-Hansen et al.:
    ScopeSense: An 8.5-Month Sport, Nutrition, and Lifestyle Lifelogging Dataset
    Springer 2023 ARKIV / DOI
  • Andreas Alexandersen, Susann Dahl Pettersen, Dag Johansen :
    Quantifying athlete wellness: Investigating the predictive potential of subjective wellness reports through a player monitoring system
    Proceedings of the Institution of Mechanical Engineers. Part P, Journal of sports engineering and technology 2023 ARKIV / DOI
  • Bjørn Aslak Juliussen, Jon Petter Rui, Dag Johansen :
    Sport and Nutrition Digital Analysis: A Legal Assessment
    Lecture Notes in Computer Science (LNCS) 29. March 2023 ARKIV / DATA / DOI
  • Aakash Sharma, Katja Pauline Czerwinska, Dag Johansen, Håvard Johansen Dagenborg :
    Capturing Nutrition Data for Sports: Challenges and Ethical Issues
    Springer 2023 ARKIV / DOI
  • Ivan Andre Matias Do Vale Baptista, Andreas Kjæreng Winther, Dag Johansen, Morten Bredsgaard Randers Thomsen, Sigurd Pedersen, Svein Arne Pettersen :
    The variability of physical match demands in elite women's football
    Science and medicine in football 2022 ARKIV / DOI
  • Lars Brenna, Isak Sunde Singh, Håvard D. Johansen, Dag Johansen :
    TFHE-rs: A library for safe and secure remote computing using fully homomorphic encryption and trusted execution environments
    Array 2022 ARKIV / DOI
  • Nikhil Kumar Tomar, Debesh Jha, Michael Riegler, Håvard D. Johansen, Dag Johansen, Jens Rittscher et al.:
    FANet: A Feedback Attention Network for Improved Biomedical Image Segmentation
    IEEE Transactions on Neural Networks and Learning Systems 2022 ARKIV / DOI
  • Enrico Tedeschi, Tor-Arne Schmidt Nordmo, Dag Johansen, Håvard D. Johansen :
    On Optimizing Transaction Fees in Bitcoin using AI: Investigation on Miners Inclusion Pattern
    ACM Transactions on Internet Technology 2022 ARKIV / DOI
  • Aakash Sharma, Thomas Bye Nilsen, Sivert Johansen, Dag Johansen, Håvard D. Johansen :
    Designing a Service for Compliant Sharing of Sensitive Research Data
    Lecture Notes in Computer Science (LNCS) 2022 ARKIV / DOI
  • Tor-Arne Schmidt Nordmo, Ove Kvalsvik, Svein Ove Kvalsund, Birte Hansen, Pål Halvorsen, Steven Hicks et al.:
    FishAI: Sustainable Commercial Fishing Challenge
    Nordic Machine Intelligence (NMI) 2022 ARKIV / DOI
  • Tor-Arne Schmidt Nordmo, Aril Bernhard Ovesen, Bjørn Aslak Juliussen, Steven Hicks, Vajira L B Thambawita, Håvard D. Johansen et al.:
    Njord: a fishing trawler dataset
    ACM Publications 2022 ARKIV / DOI
  • Andreas Kjæreng Winther, Ivan Andre Matias Do Vale Baptista, Sigurd Pedersen, Morten Brendsgaard Randers Thomsen, Peter Krustrup, Dag Johansen et al.:
    Position specific physical performance and running intensity fluctuations in elite women's football
    Scandinavian Journal of Medicine & Science in Sports 2022 ARKIV / DOI
  • Debesh Jha, Ashish Rauniyar, Håvard D. Johansen, Dag Johansen, Michael Alexander Riegler, Pål Halvorsen et al.:
    Video Analytics in Elite Soccer: A Distributed Computing Perspective
    Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop 2022 ARKIV / DOI
  • Joakim Aalstad Alslie, Aril Bernhard Ovesen, Tor-Arne Schmidt Nordmo, Håvard D. Johansen, Pål Halvorsen, Michael Riegler et al.:
    Áika: A Distributed Edge System for AI Inference
    Big Data and Cognitive Computing 2022 ARKIV / DOI
  • Tor-Arne Schmidt Nordmo, Martine Espeseth, Bjørn Aslak Juliussen, Michael Alexander Riegler, Dag Johansen :
    Detection of Commercial Fishing-related Slipping Events using Multimodal Data
    IEEE (Institute of Electrical and Electronics Engineers) 2022 DOI
  • Siarhei Kulakou, Nourhan Ragab, Cise Midoglu, Matthias Boeker, Dag Johansen, Michael Riegler et al.:
    Exploration of Different Time Series Models for Soccer Athlete Performance Prediction †
    Engineering Proceedings 2022 ARKIV / DOI
  • Andreas Husa, Cise Midoglu, Malek Hammou, Steven Hicks, Dag Johansen, Tomas Kupka et al.:
    Automatic thumbnail selection for soccer videos using machine learning
    ACM Publications 2022 ARKIV / DOI
  • Pia Smedsrud, Vajira L B Thambawita, Steven Hicks, Henrik Gjestang, Oda Olsen Nedrejord, Espen Næss et al.:
    Kvasir-Capsule, a video capsule endoscopy dataset
    Scientific Data 2021 ARKIV / DOI
  • Aakash Sharma, Thomas Bye Nilsen, Katja Pauline Czerwinska, Daria Onitiu, Lars Brenna, Dag Johansen et al.:
    Up-to-the-Minute Privacy Policies via Gossips in Participatory Epidemiological Studies
    Frontiers in Big Data 13. May 2021 ARKIV / DOI
  • Vajira L B Thambawita, Steven Hicks, Jonas L Isaksen, Mette H. Stensen, Trine B. Haugen, Jørgen K Kanters et al.:
    DeepSynthBody: the beginning of the end for data deficiency in medicine
    IEEE conference proceedings 2021 DOI
  • Sigurd Pedersen, Dag Johansen, Andrea Casolo, Morten Brendsgaard Randers Thomsen, Svein Arne Pettersen, Edvard Hamnvik Sagelv et al.:
    Maximal Strength, Sprint, and Jump Performance in High-Level Female Football Players Are Maintained With a Customized Training Program During the COVID-19 Lockdown
    Frontiers in Physiology 26. February 2021 ARKIV / DOI
  • Aakash Sharma, Katja Pauline Czerwinska, Dag Johansen, Håvard Dagenborg :
    Capturing Nutrition Data for Sports: Challenges and Ethical Issues
    2023 ARKIV
  • Aril Bernhard Ovesen, Tor-Arne Schmidt Nordmo, Dag Johansen :
    Compliant multimedia storage and data extraction from the untrusted and privacy-sensitive edge
    2023
  • Tor-Arne Schmidt Nordmo, Aril Bernhard Ovesen, Bjørn Aslak Juliussen, Steven A. Hicks, Vajira Thambawita, Håvard D. Johansen et al.:
    Njord: A Fishing Trawler Dataset
    2022
  • Dag Johansen, Håvard D. Johansen, Michael Riegler :
    Muligheter og skranker for bruk av teknologi og kunstig intelligens ved forebygging av fiskerikriminalitet
    2022
  • Michael Alexander Riegler, Dag Johansen, Bjørn Aslak Juliussen, Tor-Arne Schmidt Nordmo, Aril Bernhard Ovesen, Pål Halvorsen et al.:
    Njord: An out-in-the-wild real world fish vessel catch analysis dataset
    2022
  • Håvard D. Johansen, Dag Johansen, Bjørn Aslak Juliussen, Tor-Arne Schmidt Nordmo, Aril Bernhard Ovesen, Pål Halvorsen et al.:
    Sustainable commercial fishing: Digital inspectors to the rescue
    2022
  • Håvard D. Johansen, Dag Johansen, Areeg Samir Ahmed Elgazazz, Thomas Bye Nilsen, Aakash Sharma :
    Datainnsamling med personvern og datasikkerhet
    2022
  • Michael Alexander Riegler, Dag Johansen, Bjørn Aslak Juliussen, Tor-Arne Schmidt Nordmo, Aril Bernhard Ovesen, Pål Halvorsen et al.:
    Njord: An out-in-the-wild real world fish vessel catch analysis dataset
    Arctic Frontiers : Abstracts 2022
  • Dag Johansen, Bjørn Aslak Juliussen, Tor-Arne Schmidt Nordmo, Aril Bernhard Ovesen, Pål Halvorsen, Håvard D. Johansen et al.:
    Sustainable commercial fishing: Digital inspectors to the rescue
    Arctic Frontiers : Abstracts 2022
  • Tor-Arne Schmidt Nordmo, Aril Bernhard Ovesen, Bjørn Aslak Juliussen, Steven A. Hicks, Vajira Thambawita, Håvard D. Johansen et al.:
    Njord: A Fishing Trawler Dataset
    2022
  • Bjørn Aslak Juliussen, Elisavet Kozyri, Jon Petter Rui, Dag Johansen :
    The Third Country Problem under the GDPR: Technology to the Rescue
    2022
  • Tor-Arne Schmidt Nordmo, Ove Kvalsvik, Svein Ove Kvalsund, Birte Hansen, Pål Halvorsen, Steven Hicks et al.:
    FishAI: Sustainable Commercial Fishing Challenge
    Nordic Machine Intelligence (NMI) 2022 DOI

  • The 50 latest publications is shown on this page. See all publications in Cristin here →


    Research interests

    Johansen is directing the inter-disciplinary Corpore Sano Centre, a centre at the intersection of computer science, medicine, health, sport science, and nutritional science. He is particularly interested in next generation trustworthy run-times and analytics systems for hybrid and multi-cloud computing environments.