En uventet feil oppstod : Søk feilet: |
En uventet feil oppstod : Søk feilet: |
Nordic applicants: 4008
EU / EEA / Switzerland applicants: 7102
Non-EU/EAA applicants: 2022
Program description
Energy and Climate is a discipline of the Master's degree programme in physics.
Climate change has made it critical to search for environmentally friendly and sustainable sources of energy. There is a great need for knowledge that can help us undertake the shift towards sustainable energy production. We need to develop sustainable energy solutions, for instance from fusion energy, wind, and solar sources. In addition, continued monitoring of climate change, its causes and effects, and an understanding of climate dynamics in general will be essential for coming generations in order to make climate predictions. This is the knowledge that the Energy and Climate discipline aims to provide. The education and the master's projects offered are rooted in the research interests at UiT within the field. Current research on sustainable energy concentrates on renewable energy and fusion energy. The research on climate change concerns climate modelling and polar meteorology. Most activities are oriented towards challenges and opportunities in the High North. Students will find work opportunities in the energy and power private sector as well as in major companies that has sustainability and self-sufficiency on their agenda. In addition, students may continue with their work in science at research institutes and the university sector within sustainable energy and climate dynamics.
This discipline offers specialization in three different fields of research:
- Climate dynamics
- Fusion plasma physics
- Solar energy and hybrid systems
The climate dynamics specialization provides knowledge on atmosphere and ocean circulation, processes important in the climate system, and climate change due to natural and anthropogenic external forcings. The specialization includes a solid program in physics and mathematics and provides knowledge within fluid dynamics and climate modelling. Special attention is given to the climate of the Arctic. A master's thesis in this field will test hypotheses concerning processes and couplings in the climate system, for instance related to the coupling between atmospheric circulation and Arctic climate.
Students following the fusion plasma physics specialization will acquire a high level of knowledge of fluid dynamics, plasma physics, turbulent motions, energy transport, and numerical calculations. Candidates with these skills are highly desired in the scientific research sector and industry nationally and abroad. The Sun and other stars are powered by the energy released from fusion of hydrogen into helium. For more than half a century, there has been a large international research program focused on the development of controlled thermonuclear fusion for production of clean electrical energy on Earth. If successful, this will provide humankind with electrical energy for millennia. The fusion process requires so high temperatures that the matter is in the state of a plasma. In a reactor, this plasma will be confined by strong magnetic fields.
Students following the solar energy and hybrid systems specialization will acquire in-depth insight into the nature of this source of energy, and how it can be exploited for the benefit of humankind. In particular, candidates will be trained to understand the physics and mathematics behind solar energy conversion. The student will learn how various materials harvest solar energy on a nanoscale all the way to how to design complete solar energy systems and, importantly, how the intermittent nature of the energy source can be dealt with. For solar energy to become widespread, successful and game changing it is crucial to have renewable energy hybrid systems and good energy storage possibilities. A hybrid system is when for example wind and solar energy as well as an energy storage capacity is working together to create a more self-sufficient and secure energy supply system.
Elective courses should be determined in collaboration with your supervisor in connection with choice of research topic in the Master's thesis. Other elective courses may be approved on application or if recommended by your supervisor. An individual special curriculum or project paper may also be part of the degree.
If the Master's thesis involves work in a laboratory, in the field or on a research cruise, it is mandatory to conduct a course in safety education prior to commencing the thesis.
Learning outcomes
Job prospectives
With a master of science in physics with specialization in energy and climate you can work in fields such as:
- Energy Production
- New Energy Solution
- Solar Energy Innovation
- Fusion Energy Research
- Climate Modelling and Research
- Sustainable Energy Solutions for Rural and Urban Areas
Degree Name
Master of Science in PhysicsEn uventet feil oppstod : Søk feilet: |
Study plan
Destinations for studies abroad
En uventet feil oppstod : Søk feilet: |
En uventet feil oppstod : Søk feilet: |
En uventet feil oppstod : Søk feilet: |
En uventet feil oppstod : Søk feilet: |
En uventet feil oppstod : Søk feilet: |