spring 2025
END-3607 Geometric Modelling - 5 ECTS

Type of course

The course can be taken as a single course.

Admission requirements

A relevant undergraduate Bachelor Engineering program with minimum 25 credits mathematics, 5 credits statistics, 7,5 credits physics

Application code: 9371


Course content

Geometrical representations- exact and approximate, aspects of differential geometry and parametrization of differentiable manifolds, geometric modelling approaches, methods of computational geometry, efficiency and complexity of geometric algorithms.

Recommended prerequisites

MAT-3800 Linear Algebra II, MAT-3801 Numerical Methods

Objectives of the course

Learning outcomes, skills and attitudes

On completion of the course, the successful student is expected to have achieved the following:

Knowledge

Sound and well-systematized knowledge of the fundamentals of theoretical and computational aspects of advanced geometry relevant to mathematical modelling with curves, surfaces and volume deformations. Key words and phrases: cartesian, hyperspherical and projective coordinates, implicitization, parametrization and differential geometry of curves, surfaces and volume deformations, curve length, curvature and torsion, surface area and curvature, volume, geodesics, intrinsic geometric invariants, symmetries and conservation in geometry, polynomials, splines, B-splines, rational forms, NURBS, relevant special function families, algorithms for interpolation and approximation, aspects of graph theory related to partitions and covers, closest-neighbour manifolds, intersections, tensor-product and simplicial surfaces and volume deformations.

Skills

Inventiveness and resourcefulness in applying methods of geometric modelling in new engineering contexts, in particular, within scientific visualization, computer graphics, virtual reality, animation, geometrical constructions and representations and their manipulation and tuning, development of mathematical models and their numerical simulations, assessing model and algorithm efficiency, CAD/CAM, computer-aided geometric design (CAGD), finite and boundary element methods (FEM/BEM), etc.

General competence

A holistic understanding of the interrelations between geometric fundamentals and invariants in space - form, position, orientation, degrees of freedom, size, complexity of geometric representations.

Versatility in cooperation in joint projects of research and development teams.

Ability to formulate new problems and define new concepts relevant to applications of geometry in engineering projects.

Versatility in communication of concepts, ideas and methods of geometric modelling. Some of the best students in this course, who later choose a topic in geometric modelling for their master diploma thesis project, will be expected to communicate their results at international conferences.


Language of instruction and examination

English

Teaching methods

Classroom lectures

Classroom exercises


Information to incoming exchange students

This course is open for inbound exchange student who meets the admission requirements. Please see the Admission requirements" section".

Master Level

Do you have questions about this module? Please check the following website to contact the course coordinator for exchange students at the faculty: INBOUND STUDENT MOBILITY: COURSE COORDINATORS AT THE FACULTIES | UiT


Schedule

Examination

Examination: Date: Duration: Grade scale:
Off campus exam 07.03.2025 09:00 (Hand out)
07.03.2025 15:00 (Hand in)
6 Hours A–E, fail F
UiT Exams homepage

Re-sit examination

A re-sit exam will not be arranged for this course.
  • About the course
  • Campus: Narvik |
  • ECTS: 5
  • Course code: END-3607
  • Earlier years and semesters for this topic