Bilde av Tafavvoghi, Masoud
Bilde av Tafavvoghi, Masoud
Phdstudent Department of Community Medicine masoud.tafavvoghi@uit.no Tromsø You can find me here

Masoud Tafavvoghi


Job description

Masoud Tafavvoghi is a PhD candidate in computational pathology with the PhD project: Machine learning/statistical methods for histopathological images. Masoud is affiliated with the research group System Epidemiology.


  • Falah Jabar Rahim, Lill-Tove Rasmussen Busund, Biagio Ricciuti, Masoud Tafavvoghi, Thomas Karsten Kilvær, David J. Pinato et al.:
    Fully Automatic Content-Aware Tiling Pipeline for Pathology Whole Slide Images
    Intelligence-Based Medicine 01. November 2025 DOI
  • Bernhard Scheiner, Pasquale Lombardi, Antonio D’Alessio, Gwangil Kim, Masoud Tafavvoghi, Oleksandr Petrenko et al.:
    Preliminary qualification of a machine learning-based assessment of the tumor immune infiltrate as a predictor of outcome in patients with hepatocellular carcinoma treated with atezolizumab plus bevacizumab
    Journal for ImmunoTherapy of Cancer (JITC) 05. October 2025 DOI
  • Nikita Shvetsov, Thomas Karsten Kilvær, Masoud Tafavvoghi, Anders Sildnes, Kajsa Møllersen, Lill-Tove Rasmussen Busund et al.:
    A lightweight and extensible cell segmentation and classification model for H&E-stained cancer whole slide images
    Computers in Biology and Medicine 01. December 2025 DOI
  • Nikita Shvetsov, Anders Sildnes, Masoud Tafavvoghi, Lill-Tove Rasmussen Busund, Stig Manfred Dalen, Kajsa Møllersen et al.:
    Fast TILs—A pipeline for efficient TILs estimation in non-small cell lung cancer
    Journal of Pathology Informatics 01. April 2025 DOI
  • Mehrdad Rakaee, Masoud Tafavvoghi, Biagio Ricciuti, Joao V Alessi, Alessio Cortellini, Fabrizio Citarella et al.:
    Deep Learning Model for Predicting Immunotherapy Response in Advanced Non-Small Cell Lung Cancer
    JAMA Oncology 2024 DOI / ARKIV
  • Masoud Tafavvoghi, Anders Sildnes, Mehrdad Rakaee, Nikita Shvetsov, Lars Ailo Aslaksen Bongo, Lill-Tove Rasmussen Busund et al.:
    Deep learning-based classification of breast cancer molecular subtypes from H&E whole-slide images
    Journal of Pathology Informatics 2024 DOI / ARKIV
  • Masoud Tafavvoghi, Lars Ailo Aslaksen Bongo, Nikita Shvetsov, Lill-Tove Rasmussen Busund, Kajsa Møllersen :
    Publicly available datasets of breast histopathology H&E whole-slide images: A scoping review
    Journal of Pathology Informatics 2024 DOI / ARKIV
  • Mehrdad Rakaee, Sigve Andersen, K. Giannikou, Erna-Elise Paulsen, Thomas Karsten Kilvær, Lill-Tove Rasmussen Busund et al.:
    Machine learning-based immune phenotypes correlate with STK11/KEAP1 co-mutations and prognosis in resectable NSCLC: a sub-study of the TNM-I trial
    Annals of Oncology 2023 DOI / ARKIV
  • Masoud Tafavvoghi, Erna-Elise Paulsen, Falah Jabar Rahim, Sigve Andersen, Ana Paola Lombardi, Elin Richardsen et al.:
    51P Deep learning-based detection of non-angiogenic growth patterns in early-stage lung cancer
    ESMO Real World Data and Digital Oncology 01. November 2025 DOI
  • Masoud Tafavvoghi, Falah Jabar Rahim, Sigve Andersen, Erna-Elise Paulsen, A. Cortellini, P. Lombardi et al.:
    219P Benchmarking state-of-the-art deep learning models for tumor-infiltrating lymphocytes (TILs) quantification
    ESMO Real World Data and Digital Oncology 01. November 2025 DOI
  • Masoud Tafavvoghi, Elio Adib, Elias Bou Farhat, Falah Jabar Rahim, Amin Nassar, Åslaug Helland et al.:
    Single-slide histology-based deep learning model for mismatch repair deficiency prediction in colorectal cancer.
    Journal of Clinical Oncology 01. June 2025 DOI
  • Mehrdad Rakaee, Solfrid Thunold, Masoud Tafavvoghi, Åsa Kristina Öjlert, Krinio Giannikou, Elio Adib et al.:
    Multiomics profiling for prediction of immunotherapy response in advanced pleural mesothelioma: Sub-study of the NIPU trial.
    Journal of Clinical Oncology 01. June 2025 DOI
  • Mehrdad Rakaee, Masoud Tafavvoghi, A. Cortellini, Sigve Andersen, Falah Jabar Rahim, L. Brunetti et al.:
    P1.11.62 Deep Learning Histopathology Model for PD-L1 (TPS) and Immunotherapy Outcome Prediction in Non-Small Cell Lung Cancer
    Journal of Thoracic Oncology 01. October 2025 DOI
  • Masoud Tafavvoghi, Kajsa Møllersen :
    Machine Learning for the Analysis of Breast Cancer Histopathology Images
    UiT Norges arktiske universitet 03. October 2025
  • Elio Adib, falah jabar, Masoud Tafavvoghi, Amin Nassar, Elias Bou Farhat, Harvey J. Mamon et al.:
    Deep learning–powered analysis of tumor-infiltrating lymphocytes (TILs) in colorectal cancer
    Journal of Clinical Oncology 01. February 2025 DOI
  • Mohsen Gamal Saad Askar, Masoud Tafavvoghi, Lars Småbrekke, Lars Ailo Bongo, Kristian Svendsen :
    Using machine learning methods to predict all-cause somatic hospitalizations in adults: A systematic review
    PLOS ONE 2024 DOI / ARKIV
  • Elio Adib, falah jabar, Masoud Tafavvoghi, Amin Nassar, Lill-Tove Rasmussen Busund, Tom Dønnem et al.:
    Artificial Intelligence-powered analysis of the tumor immune microenvironment in primary and metastatic colorectal cancer
    Annals of Oncology 01. September 2024 DOI
  • Falah Jabar Rahim, Sigve Andersen, Erna-Elise Paulsen, Masoud Tafavvoghi, Elin Helmine Richardsen, Sissel Gyrid Freim Wahl et al.:
    Integrating Artificial intelligence (AI)-based lymphocytic infiltration assessment in early-stage NSCLC: A sub-study of the TNM-I trial
    Annals of Oncology 01. September 2024 DOI
  • Kajsa Møllersen, Lars Ailo Bongo, Masoud Tafavvoghi :
    Cancer detection for white urban Americans
    2023 ARKIV
  • Mehrdad Rakaee, Masoud Tafavvoghi, Elio Adib, Biagio Ricciuti, Joao Alessi, Alessio Cortellini et al.:
    Artificial intelligence algorithm developed to predict immune checkpoint inhibitors efficacy in non–small-cell lung cancer
    Journal of Clinical Oncology 01. June 2023 DOI

  • The 50 latest publications is shown on this page. See all publications in Cristin here →


    Research interests

    Research interests

    • Machine learning
    • Deep learning
    • computational pathology
    • Medical imaging
    • Bioinformatics
    • Biostatistics

     

    Teaching

    • HEL-8002:  Logistic Regression and Statistical Analysis of Survival Data
    • HEL-8030: Applied Linear Regression Analysis
    • HEL-8047: Statistical models, conclusions and uncertainty for scientific data analysis
    • HEL-3006: Introduction to Epidemiology and Biostatistics
    • HEL-3070:  Biostatistics II
    • MED-1501: Medicine 1st year of study (statistics)
    • Supervising an MPH master student's summer project on histology images. 



    MH øst L11.232


    Click for bigger map