BSc (and MSc) level research

The practice of undergraduate research (UR) arguably began in earnest at MIT in 1969 with the UROP program, whereby all undergraduates were offered the opportunity to participate in faculty-led forefront research. Today, UR is standard at all American universities. The level of ambition understandably varies: at top schools, virtually all chemistry undergrads participate in multiple semesters of fairly intensive research, often ending up with one or more publications by the time they graduate.

UiT's inorganic and materials chemistry group has been a pioneer in UR this side of the pond, starting in the mid-1990s. Some 50 or so bachelor and master degree students, ERASMUS students and exchange students from further afield, have cut their teeth on real-life research in our laboratory. These experiences go considerably beyond a standard bachelor thesis, not only exposing the student to half a dozen experimental techniques, but also allowing them to make and take pride in a contribution at the scientific forefront (see below for a list of >30 scientific articles coauthored by BSc and MSc researchers in our laboratory). The benefits of such experiences are too numerous to list here: they have been called the secret sauce that turns an undergraduate education from middling to exceptional.

Excitingly, UR is emerging as a key tool for furthering diversity and inclusion. Women, minorities, LGBTQ+, disabled, and neurodivergent students benefit particularly from the extensive mentoring they receive in the course of their project.

UR is resource-demanding and most universities are simply not equipped to offer genuine research experiences to undergraduates. Happily, at UiT's inorganic and materials chemistry laboratory, we do have the infrastructure and enthusiastic mentors to offer a world-class undergraduate research experience. Come and check us out!

Journal cover of paper with contributions by UiT student "lektor" student Martin Johansen and chemistry student Stian Martinsen 

UiT's inorganic and materials chemistry research papers coauthored with bachelor and master students

(The names of the bachelor and master level researchers are indicated below in bold.)

Vangberg, T.; Ghosh, A. Monodeprotonated free base porphyrinThe Journal of Physical Chemistry B 1997101, 496-1497.

Ghosh, A.; Gonzalez, E.; Vangberg, T. Theoretical studies of low-spin six-coordinate iron (III) porphyrins relevant to cytochromes b: variable electronic configurations, ligand noninnocence, and macrocycle rufflingThe Journal of Physical Chemistry B 1999103, 1363-1367.

Ghosh, A.; Gonzalez, E. Theoretical studies on high‐valent manganese porphyrins: Toward a deeper understanding of the energetics, electron distributions, and structural features of the reactive intermediates of enzymatic and synthetic manganese‐catalyzed oxidative processesIsrael Journal of Chemistry 200040, 1-8.

Ghosh, A.; Wondimagegn, T.; Gonzalez, E.; Halvorsen, I. Valence tautomerism and macrocycle ruffling in nickel (III) porphyrinsJournal of Inorganic Biochemistry 200078, 79-82.

Ghosh, A.; Vangberg, T.; Gonzalez, E.; Taylor, P. Molecular structures and electron distributions of higher‐valent iron and manganese porphyrins. Density functional theory calculations and some preliminary open‐shell coupled‐cluster resultsJournal of Porphyrins and Phthalocyanines 2001, 5, 345-356.

Dey, A.; Ghosh, A. “True” iron (V) and iron (VI) porphyrins: A first theoretical explorationJournal of the American Chemical Society 2002, 124, 3206-3207.

Tangen, E.; Ghosh, A. Electronic structure of high-valent transition metal corrolazine complexes. The young and innocent? Journal of the American Chemical Society 2002124, 8117-8121.

Vangberg, T.; Lie, R.; Ghosh, A. Symmetry-breaking phenomena in metalloporphyrin π-cation radicalsJournal of the American Chemical Society 2002, 124, 8122-8130.

Steene, E.; Dey, A.; Ghosh, A. β-Octafluorocorroles. Journal of the American Chemical Society 2003125, 16300-16309.

Ghosh, A.; Tangen, E.; Gonzalez, E.; Que Jr, L. Models of High‐Valent Intermediates of Non‐Heme Diiron AlkaneMonooxygenases: Electronic Structure of a Bis(μ‐oxo)diron (iv) Complex with Locally Low‐Spin Metal Centers. Angewandte Chemie 2004116, 852-856.

van Oort, B.; Tangen, E.; Ghosh, A. Electronic Structure of Transition Metal− Isocorrole Complexes: A First Quantum Chemical StudyEuropean Journal of Inorganic Chemistry 2004, 2442-2445.

Tangen, E.; Conradie, J.; Svadberg, A.; Ghosh, A. Understanding the unexpected linearity of the trans-{Mn(NO) 2} 8 unit in a phthalocyanine complex: some thoughts on dinitrosylheme intermediates in biologyJournal of inorganic biochemistry 200599, 55-59.

Tangen, E.; Ghosh, A. Electronic structure of cis-Mo(P)(NO)2, where P is a porphyrin: An organometallic perspective of metalloporphyrin–NO complexesJournal of inorganic biochemistry 200599, 959-962.

Ghosh, A.; Wasbotten, I. H.; Davis, W.; Swarts, J. C. Norcorrole and dihydronorcorrole: A predictive quantum chemical study. Eur. J. Inorg. Chem. 2005, 4479-4485.

Tangen, E.; Svadberg, A.; Ghosh, A. Toward modeling H-NOX domains: A DFT study of heme-NO complexes as hydrogen bond acceptorsInorganic chemistry 200544, 7802-7805.

Conradie, M. M.; Conradie, J.; Ghosh, A. A DFT overview of high-valent iron, cobalt and nickel tetraamidomacrocyclic ligand (TAML) complexes: The end of innocence? Journal of inorganic biochemistry 2006, 100, 620-626.

Chemistry undergrad Einar Jonsson worked on ReO and Au corroles with us in 2020-2021.
Capar, C.; Thomas, K. E.; Ghosh, A. Reductive demetalation of copper corroles: first simple route to free-base β-octabromocorrolesJournal of Porphyrins and Phthalocyanines 2008, 12, 964-967.

Johansen, I., Norheim, H.K., Larsen, S., Alemayehu, A.B., Conradie, J. and Ghosh, A., 2011. Substituent effects on metallocorrole spectra: insights from chromium-oxo and molybdenum-oxo triarylcorrolesJournal of Porphyrins and Phthalocyanines15(11n12), pp.1335-1344.

Berg, S. and Ghosh, A., 2011. Arrow Pushing: A Rational, Participatory Approach To Teaching Descriptive Inorganic ChemistryJournal of Chemical Education88(12), pp.1663-1666.

Berg, S. and Ghosh, A., 2013. Six impossible mechanisms before breakfast: Arrow pushing as an instructional device in inorganic chemistryJournal of Chemical Education90(11), pp.1446-1451.

Albrett, A.M., Thomas, K.E., Maslek, S., Młodzianowska, A., Conradie, J., Beavers, C.M., Ghosh, A. and Brothers, P.J., 2014. Mono-and diboron corroles: factors controlling stoichiometry and hydrolytic reactivityInorganic Chemistry53(11), pp.5486-5493.

Conradie, J., Berg, S. and Ghosh, A., 2015. Mechanisms of Oxygen Atom Transfer between Main‐Group ElementsEuropean Journal of Inorganic Chemistry2015(24), pp.4138-4144.

Vazquez-Lima, H., Norheim, H.K., Einrem, R.F. and Ghosh, A., 2015. Cryptic noninnocence: FeNO corroles in a new lightDalton Transactions44(22), pp.10146-10151.

Geology undergrad Rune Einrem (2015) was the first to synthesize technetium-99 corroles.

Einrem, R.F., Braband, H., Fox, T., Vazquez‐Lima, H., Alberto, R. and Ghosh, A., 2016. Synthesis and molecular structure of 99Tc CorrolesChemistry–A European Journal22(52), pp. 18747-18751.

Einrem, R.F., Gagnon, K.J., Alemayehu, A.B. and Ghosh, A., 2016. Metal–Ligand Misfits: Facile Access to Rhenium–Oxo Corroles by Oxidative MetalationChemistry–A European Journal22(2), pp.517-520.

Capar, J., Zonneveld, J., Berg, S., Isaksson, J., Gagnon, K.J., Thomas, K.E. and Ghosh, A., 2016. Demetalation of Copper undecaarylcorroles: molecular structures of a free-base undecaarylisocorrole and a gold undecaarylcorroleJournal of Inorganic Biochemistry162, pp.146-153.

Norheim, H.K., Schneider, C., Gagnon, K.J. and Ghosh, A., 2017. One‐Pot Synthesis of a bis‐Pocket Corrole through a 14‐fold Bromination ReactionChemistryOpen6(2), pp.221-225.

Ganguly, S., Renz, D., Giles, L.J., Gagnon, K.J., McCormick, L.J., Conradie, J., Sarangi, R. and Ghosh, A., 2017. Cobalt-and rhodium-corrole-triphenylphosphine complexes revisited: The question of a noninnocent corroleInorganic chemistry56(24), pp.14788-14800.

Einrem, R.F., Jonsson, E.T., Teat, S.J., Settineri, N.S., Alemayehu, A.B. and Ghosh, A., 2021. Regioselective formylation of rhenium-oxo and gold corroles: substituent effects on optical spectra and redox potentialsRSC advances11(54), pp.34086-34094.

Vazquez-Lima, H., Conradie, J., Johansen, M.A., Martinsen, S.R., Alemayehu, A.B. and Ghosh, A., 2021. Heavy-element–ligand covalence: ligand noninnocence in molybdenum and tungsten Viking-helmet CorrolesDalton Transactions50(37), pp.12843-12849.

Larsen, S.; Pérez, B. C. L.; Ghosh, A. CalixcorroleJournal of Porphyrins and Phthalocyanines 2023, 27, 1263-1269.

Johannesen, K. E.; Johansen, M. A. L.; Einrem, R. F.; McCormick-McPherson, L. J.; Alemayehu, A. B.; Borisov, S. M.; Ghosh, A. Influence of Fluorinated Substituents on the Near-Infrared Phosphorescence of 5d MetallocorrolesACS Org. Inorg. Au 2023, Article ASAP.

Johansen, M. A. L.; Ghosh, A. The Curious Chemistry of CarbonesNature Chemistry202315, 1042-1042.