autumn 2017
FSK-3006 Model theory and data processing methods - 10 ECTS

Application deadline

Applicants from Nordic countries: 1 June for the autumn semester and 1 December for the spring semester. Exchange students and Fulbright students: 1 October for the spring semester and 15 April for the autumn semester.

Type of course

This cource is obligatory in the Master's programme in International Fisheries Management (IFM). The course can also be taken as a singular course.

Admission requirements

Application code: 9371

Recommended entrance requirements are BIO-3556 Fishery Biology and Harvest Technology or similar background, and basic familiarity with quantitative methods.


Course overlap

If you pass the examination in this course, you will get an reduction in credits (as stated below), if you previously have passed the following courses:

BED-3105 Research Seminar 1 stp
BIO-3012 Studydesign and dataanalysis in Biology II 3 stp
BIO-3524 Analysis of multidimensional data in ecology and environmental 3 stp
HEL-3070 Biostatistics 3 stp
STA-3300 Applied Statistics 2 3 stp

Course content

The course covers basic statistical theory and the quantitative and qualitative analysis of biological and economic information as well as methods used in social sciences related to fisheries management. Students are drilled in data retrieval, treatment, analysis and presentation, using simple and widely available software.

Recommended prerequisites

BIO-3556 Fishery Biology & Harvest Technology

Objectives of the course

Objective of the course

Intended learning outcomes:

Knowledge:

  • apply basic quantitative methods to process, analyze, test hypotheses and visualize structured and unstructured data (e.g. generalized linear models)
  • apply basic qualitative methods to process, analyze, test hypotheses and visualize structured and unstructured data (e.g. content analysis, conceptual frameworks)
  • explain results of the data processing and data analysis methods that were used
  • use simple models to represent systems and make forecasts
  • familiarize with both academic and business-like research and development environments

Skills:

  • summarize and present qualitative and quantitative data
  • perform statistical analyses using different software
  • practice different oral and written communication skills

General competences:

  • communicate findings of analyses to support decision-making

Relevance for study program:

The course provides a practical background for scientific analysis and reporting in a multidisciplinary environment.


Language of instruction and examination

The language of instruction and all syllabus material is English.

Teaching methods

Lectures, seminars, workshops, computer labs, peer-teaching, simulations, flipped-classroom.

The learning outcomes are effectively achieved through active student participation. Students are expected to prepare before every session.


Assessment

Assessment

The course has portfolio assessment. The grading scale is A-F, where A-E is passed, and F is failed. Pass marks in the four assessment parts (each report and essay) is a requirement for successful completion of the course. The three reports together count 50% of final grade; the essay (home exam) counts 50% of final grade.

Submission of reports and essay: electronically.

Portefolio

  • Written report on quantitative methods assignment
  • Written report on qualitative methods assignment
  • Written report on modelling assignment
  • Final essay (home exam) on given topic (two weeks)

Work requirements:

Oral presentation on given topic (quantitative method, qualitative method or modelling)

Oral presentation of the essay (on given topic).

A re-sit exam will be arranged in the next semester.


Recommended reading/syllabus

Recommended reading/syllabus
  • Berk, Kenneth; Carey, Patrick: Data analysis with Microsoft Excel. Updated for Office 2007. 2009 Brooks/Cole; Cengage Learning. Chapters 2-4, 6, 8, 9, 10.
  • Creswell, John W.: Qualitative inquiry and research design. 2007 SAGE Publications. Chapter 8.
  • Cumming, Geoff; Fidler, Fiona; Vaux, David L.: Error bars in experimental biology.2007 The Journal of cell biology, 177(1):7-11.
  • Johnson, Burke R.; Christensen, Larry: Chapter 2. Quantitative, Qualitative, and Mixed Research, http://www.southalabama.edu/coe/bset/johnson/2lectures.htm .
  • Kawulich, Barbara B.: Data analysis techniques in qualitative research. 2004 Journal of Research in Education. 14(1):96-113.
  • Lofland, John; Snow, David; Anderson, Leon; Lofland, Lyn H.: Analyzing social settings. 2006 Wadsworth, Cengage Learning, Chapter 9 III - VI.
  • Miles, Matthew; Huberman, Michael: Qualitative data analysis. 1994 Sage Publications. Chapter 2A and Chapter 4.
  • Silverman, David (editor): Qualitative research. 2011 SAGE Publications. Chapter 15.
  • Shields, Linda; Twycross, Alison: The difference between quantitative and qualitative research. 2003 Paediatric nursing, 15(9):24.
  • Verdinelli, Susana; Scagnoli, Norma I.: Data display in qualitative research. 2013 International Journal of Qualitative Methods. 12(1):359-81.

Error rendering component

  • About the course
  • Campus: Tromsø |
  • ECTS: 10
  • Course code: FSK-3006
  • Earlier years and semesters for this topic