autumn 2020
FYS-3030 Fluid dynamics of atmospheres and oceans - 10 ECTS
Type of course
The course is available as a singular course. The course is also available to exchange students and Fulbright-students.
The course will only be taught if there is a sufficient number of students. If you are interested in following the course, please contact the student advisor as soon as possible
Course content
The course gives the basic theory for the large-scale dynamics of atmospheres and oceans and provides the foundation for more specialized studies of atmosphere and ocean dynamics. The course includes the fundamental equations for atmosphere and ocean fluid dynamics, the effects of rotation and stratification, the beta-plan approximation, the Boussinesq and anelastic equations, scaling relevant for the Earth atmosphere and ocean circulations, the Rossby number, static instability and gravity waves, the Ekman layer, the shallow-water approximation and its wave solutions, available potential energy, vorticity, potential vorticity, the circulation theorems, Rossby waves and barotropic and baroclinic instability.Objectives of the course
Knowledge - The student can
- identify the basic equations relevant for the circulation in the atmosphere and ocean
- describe the concept and the characteristics of constant density, barotropic and baroclinic fluids
- explain the implication on a fluid by rotation, and describe the concept of an f-plane and beta-plane
- explain the advantages and limitations of the Boussinesq and anelastic approximations, and describe the reasons for, and implications of the density variations in the Earth's atmosphere and ocean
- describe the concept of thermal-wind balance
- explain the role of static stability and instability and its implications for gravity and acoustic waves
- describe the advantages and the limitations of the shallow-water approximation
- identify wave solution to the shallow-water equations such as Kelvin and Poincaré waves
- explain the Kelvin theorem and the concept of vorticity and potential vorticity
- describe the quasi-geostrophic approximation and identify its Rossby wave solution
- explain barotropic and baroclinic instability
Skills - The student can
- solve basic problems within atmosphere and ocean fluid dynamics
- apply appropriate scaling of equations associated with atmosphere and ocean fluid dynamical problems
General competence - The student can
- incorporate current knowledge and new scientific information into critical thinking
- communicate theories, problem descriptions and solutions
Assessment
An oral examination counts about 100 % of the assessment.
Assessment scale: letter grades A-F. F - fail.
Re-sit examination (section 22): There is no access to a re-sit examination in this course. Postponed examination (sections 17 and 21): Students with valid grounds for absence will be offered a postponed examination. Postponed assignments are arranged during the semester if possible, otherwise early in the following semester. Postponed final examination is held early in the following semester.
See indicated sections in Regulations for examinations at the UiT The arctic university of Norway for more information.
Coursework requirements Access to the final examination requires submission of up to three assignments are passed.
- About the course
- Campus: Tromsø |
- ECTS: 10
- Course code: FYS-3030
- Responsible unit
- Department of Physics and Technology